手机浏览器扫描二维码访问
这些精神病症也根本不是因为人类那不可见的无限心灵窥探到了无限的世界,单纯只是源于大脑的器质性病变而已。
随手将哥德尔的病例记录用报纸盖上,李恒从临时精神科医生的身份上回归:
“说回集合论的问题。”
“康托尔在建立集合论的工作中就已经发现了康托尔悖论,或者将其称为最大基数悖论。”
“任一集合的基数小于其幂集的基数,根据概括规则,可由一切集合组成集合S。”
“S的基数小于其幂集P(S)的基数。但是,P(S)又是一切集合构成的集合S的一个子集,即P(S)的基数小于或等于S的基数,由此产生逻辑矛盾。”
“第二个悖论,最大序数悖论,同样因为所有序数的集合而产生了类似的逻辑矛盾。”
“最后一个,罗愫悖论。”
“这个悖论比上面两个悖论更简单,但因此威力更强大,动摇了集合论的基础。”
把所有集合分为两类,一类是正常集合,例如所有自然数组成的集合。
这类集合的特点是,集合本身不能作为自己的一个元素。
非正常集合,例如,所有集合所组成的集合。
这类集合的特点是,集合本身可以作为自己的一个元素。
现假设由所有正常集合组成一个集合S。
如果S属于自身,则S是非正常集合,它不是由所有正常集合组成的集合,与假设矛盾。
如果S不属于自身,则它是正常集合,所以它是由所有正常集合组成的集合S的一个元素,矛盾。
写成符号形式就是:
S∈S→S?S,S?S→S∈S。
以上三个集合论中的悖论本质上都源于自我指涉问题。
因为假定以自身为元素的集合存在,所以出现了不满足排中律的自我矛盾的命题。
ZF公理系统解决这个矛盾的办法是使用正则性公理。
它禁止将一个集合作为其自身的元素,禁止了诸如“所有集合的集合”和“所有序数的集合”这样的陈述。
另一个NBG公理系统,这里的G就是哥德尔。
它将“所有集合的集合”称为“真类”,将类与集合分离,从而避免出现自指悖论。
“接下来是不是就是那个很着名的哥德尔不完备定理了?”
阿基里斯靠在壁炉旁低声问道。
房间里的温度已经被火焰加热到近似于炎炎夏日的温度,很难想象那个64岁的干瘦老人是如何在这样的环境中裹着厚厚的毛衣还会感到冷。
“比起广为流传的哥德尔不完备定理,先要提起的是哥德尔完备性定理。”
“从这个定理上,能看出自我指涉问题是如何与实无穷扯上联系的。”
“哥德尔完全性定理研究的内容是一阶谓词逻辑,或者说是有限函数演算。”
本小章还未完,请点击下一页继续阅读后面精彩内容!
“它表明命题逻辑和一阶逻辑具有可靠性和完备性。”
五浔之外 我的室友不对劲 我真不想修行啊 摘星手记 诡秘世界我能逢凶化吉 大乾佛主 我媳妇是医圣传人 游历万界的永生者 恶魔天使 狙击战神 大梦王 开局人间体 穿越之直上青云 奥特曼之黑暗星纹 七零之重组家庭的小女儿 特种兵:我成了全球特战教父 山村大闲人 殡葬异事录 分开后偏执大佬缠上我了 重生我的老婆是天后
市二中的金牌老师孙默落水后,来到了中州唐国,成了一个刚毕业的实习老师,竟然有了一个白富美的未婚妻,未婚妻竟然还是一所名校的校长,不过这名校衰败了,即将摘牌除名,进行废校处理孙默的开局,就是要帮助未婚妻坐稳校长之位,让学校重回豪门之列。孙默得到绝代名师系统后,点废成金,把一个个废物变成了天才,在孙默的指导下,学渣...
某天,宋书航意外加入了一个仙侠中二病资深患者的交流群,里面的群友们都以‘道友’相称,群名片都是各种府主洞主真人天师。连群主走失的宠物犬都称为大妖犬离家出走。整天聊的是炼丹闯秘境炼功经验啥的。突然有一天,潜水良久的他突然发现群里每一个群员,竟然全部是修真者,能移山倒海长生千年的那种!啊啊啊啊,世界观在...
...
炮灰是什么?雪兰告诉你,炮灰是用来打别人脸的。凭什么炮灰就要为男女主的感情添砖加瓦,凭什么炮灰就要任人践踏?凭什么炮灰就要为男女主献上膝盖?凭什么炮灰就要成为垫脚石?炮灰不哭,站起来撸!本文男女主身心干净,秉持着宠宠宠的打脸原则,男主始终是一个人哦!...
被家族抛弃,被仇敌废掉的少年商浩,在走投无路时,救了两个人,然后,他发现自己有了异能故事从帮助一个村子脱贫致富展开。各位书友要是觉得仙门弃少还不错的话请不要忘记向您QQ群和微博里的朋友推荐给力文学网哦!...
从小在孤儿院长大的敖问,一次意外死亡,重生为蛇,但是上天赐予他神龙进化系统这系统可以穿越万界,可以帮助他蜕蛇成龙!从此敖问为了不想平凡过完一生,开始了轰轰烈烈的进化之路。敖问可以跟人类结婚生子吗?系统你自己试试看,不就知道了吗?黑暗流无敌流装逼流微度PS胆小慈悲心勿进。...