头条屋小说网

手机浏览器扫描二维码访问

第一百三十八章 欧拉常微分方程微积分(第1页)

1755年,瑞士数学家L.欧拉在写一本叫《流体运动的一般原理》的书。

其中在研究无粘性流体动力学时,发现了一种运动的微分方程。

这个微分方程是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程。

欧拉敏锐的发现,这个方程还可以去解释热的传导、圆膜的振动、电磁波的传播等问题。

长得是这样的,ax2D2y+bxDy+cy=f(x),类似二次方程。

其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D2y的系数是二次函数ax2,一阶导数Dy的系数是一次函数bx,y的系数是常数。

而且,欧拉不止步于此,还继续发现了高次导数的推广的形式。

同时欧拉使用带自然对数底的带还,再用D表示微分符号,再用归纳法,转化出常微分方程。

得出的方程可以求出2次甚至高次的常微分方程通解。

在物理学上,欧拉方程统治刚体的转动,可以选取相对于惯量的主轴坐标为体坐标轴系,这使得计算得以简化,因为我们如今可以将角动量的变化分成分别描述的大小变化和方向变化的部分,并进一步将惯量对角化。

方程组各方程分别代表质量守恒(连续性)、动量守恒及能量守恒,对应零粘性及无热传导项的纳维-斯托克斯方程。

历史上,只有连续性及动量方程是由欧拉所推导的。然而,流体动力学的文献常把全组方程——包括能量方程——称为“欧拉方程”。跟纳维-斯托克斯方程一样,欧拉方程一般有两种写法:“守恒形式”及“非守恒形式”。守恒形式强调物理解释,即方程是通过一空间中某固定体积的守恒定律;而非守恒形式则强调该体积跟流体运动时的变化状态。

欧拉方程可被用于可压缩性流体,同时也可被用于非压缩性流体——这时应使用适当的状态方程,或假设流速的散度为零。

f(x)=x^n*y^(n)+p1*x^(n-1)*y^(n-1)+……+pn-1*x*y+pn*y

其中做变换x=e^t或t=lnx,将自变量x换成t。

可得到dydx,很对对应的对y求x高阶导数的各个公式。

用符号D表示对t求导的运算ddt。

可得xy,x^2y,以至得到x^n*y^(n)表示出的关于D的式子。

然后带入方程,再把t换成lnx,得到原方程的解法。

可以轻松求解一个在弹性力学中常见的四阶变系数线性微分方程。

喜欢数学心请大家收藏:()数学心

快穿之炮灰得偿所愿  暗无  穿到八零,我自带锦鲤系统!  译文欣赏:博伽瓦谭  宗门全是美强惨,小师妹是真疯批  摊牌了,我爹是绝顶高手!  国运:拥有多重身份的我很合理吧  农夫是概念神?三叶草了解一下!  我一枪一剑杀穿大陆  在下潘凤,字无双  玄灵界都知道我柔弱可怜但能打  大明:开局气疯朱元璋,死不登基  混迹娱乐圈的日子  永恒大陆之命运  哦豁!虐文炮灰不干了!  我的徒弟不对劲  重生在宝可梦,我的后台超硬  新人驾到  至尊战皇  穿成商户女摆烂,竟然还要逃难!  

热门小说推荐
大小姐的近身狂医

大小姐的近身狂医

左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...

六零军营成长

六零军营成长

一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...

快穿:我只想种田

快穿:我只想种田

别被书名骗了,取名废,其实就是女强无CP,村姑背景系统逆袭流,也俗称慢穿泥石流,凶杀末世武侠仙侠魔法啥都有,还有,新书820不见不散。官方群满一千粉丝值进(五九零六五三四八三)后援群,满一万粉丝值进VIP群。PS本文无CP...

八零小军妻

八零小军妻

养父母待她如珠如宝,她却心心念念的想要回到抛弃她待她如糠如草的亲生父母身边儿,犯蠢的后果就是养母死不瞑目,养父断绝来往,她,最终惨死车轮下重来一次,她要待养父母如珠如宝,待亲生父母如糠如草!至于抢她一切的那个亲姐姐,呵,你以为还有机会吗?哎哎哎,那个兵哥哥,我已经定亲了,你咋能硬抢?!哎哎哎...

最狂门徒

最狂门徒

格斗,医术,算命,鉴宝,泡妞无一不精。嚣张,霸气,睿智,重情,重义集于一身。水有源,树有根!他就是世界最强者的唯一门徒!从此,最狂门徒诞生!慕容2015都市新作,请大家多多支持!慕容官方交流群慕容世家167168067另,慕容完本作品特种高手纵横都市还请大家多多支持!...

上门狂婿

上门狂婿

被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...

每日热搜小说推荐