头条屋小说网

手机浏览器扫描二维码访问

第六百零七章 柯克曼女生问题图论(第1页)

1850年,英格兰国教会神父柯克曼在闲暇时间提出一个数学问题:“学校有15名女生,每天3人一组出去散步。要保证每周的7天内,任何两人都有一次同组的经历,但也只能有一次同组经历。请问如何办到?”,这就是柯克曼女生问题。

在现代数学家看来,这类问题最好的办法把他们看成超图——一堆三个节点或更多的节点组成的集合。15个女生就是节点,三人同组就看成这三个节点用三条线段(图论术语会说三条边)连接成的三角形。

柯克曼女生问题实际上就是问,有没有一种三角形的排列,把这些女生节点连接起来,并且,这些三角形还不能共边。共边意味着两个女生被同组安排了两次。题设要求的安排意味着女生们每周都能相聚一次,而每一天都是和新朋友一起散步。

柯克曼提出这个问题之后,近200年来,无数相关问题吸引和困扰着数学家。

1973年,传奇数学家埃尔德什提出了一个类似的问题。

他问能不能构造一个超图,这个超图拥有如下两个看似矛盾的性质。

性质一,任意两个节点都恰好被一个三角形包含,就和之前的女生一样。性质一要求了三角形要非常的密。

性质二要求三角形要以某种精确的方式铺得足够广(具体的说,就是任意拿出几个三角形,三角形占用的结点数要比三角形本身的数量至少多出三个)。

”这有点矛盾,这些物体的布局你既要求局部上稀疏,又要求整体上稠密。“加州理工学院的数学家康隆(DavidConlon)如是说道。

2022年1月,四位数学家通过一份长达50的论文,证明了只要节点足够多,总是可以构造这样的超图。伯明翰大学的数学家罗(AllanLo)说:“为了得到这个结果,他们用的办法的技术性程度令人惊叹。”康隆也说:“这是一个非常优秀的成果。”

研究团队建立了一个满足埃尔德什苛刻要求的系统方法,该系统方法从一个随机选择的三角形的开始,极其小心地设计以后续过程以满足他们的要求。“证明里那些复杂困难的分支情况的数量是非常惊人的。”康隆说。

他们的证明策略是从一个三角形开始,细致的构造这个超图。举个例子,你可以试想一下我们提到的15个女生,然后两两相连做线段。

我们需要从这些线段上描出我们需要的、满足条件的一堆三角形:

第一,任意两个三角形不共边。(满足这样条件的系统叫做施泰纳三元系)

第二,让每个三角形的子集占用足够多的节点。

数学家们对此有个通俗的类比。

现在假设我们不是在描三角形,而是在用乐高积木建造房屋。

你建造的前几个房子非常宏伟、坚固和精致。

你建好这些后,就把它们放在旁边备用。数学家把它们称为”吸收器“。

现在,用剩下的乐高积木继续随意的建造房屋。

当剩下的乐高积木越来越少的时候,你会发现一些散落的积木,和一些搭建不完善的房屋。

这个时候,你可以从吸收器上抽出几个积木块,用在不完善的建筑上。

因为吸收器非常的坚固,抽出一些积木不会导致严重的后果。

施泰纳三元系中,你的构造的房屋就是吸收器。

吸收器在这里就是精心挑选的线段(边)。

如果发现无法把剩余的三元组搭建成满足条件的三角形时,可以使用吸收器中的线段进行调整。当你做完这些调整后,吸收器本身也融入到了各个三角形之中。

吸收器的办法有时会遇到阻碍。

但是数学家们修补了这个问题,他们找到了一种新办法绕过这些阻碍。

比如,有一种叫做迭代吸收器的,它将线段划分成嵌套集合序列,于是每个吸收器都是会为下一级迭代服务。

”十多年来,进步巨大,“康隆说。”这已经是某种艺术形式,如果看成艺术,他们展示了一个非常高级的艺术。“

即便有了迭代吸收器,埃尔德什问题也依旧很难。”这就是问题没有得到解决的原因“,论文其中一个作者索尼(MehtaabSawhney)说。

比如,在迭代吸收的其他应用中,一旦你完成了一个集合的构建——无论是三角形、泰纳三元系,还是其他结构——你可以认为事情告一段落并扔在一边。然而,埃尔德什的条件要求让这四位数学家不能这样做。有问题的三角形很容易触及多个吸收器的节点。

“一个你在500步前选择的三角形,你需要以某种方式记住,并知道如何处理它,”索尼说。

这四个人最终发现,如果他们选择的三角形足够精细,他们就可以绕过每一个小问题。“最好的办法是考虑每个由100个三角形组成的子集,并保证以正确的可能性挑选三角形,”索尼说。

论文的作者们乐观地认为,他们的这个方法可以推广到别的问题。他们已经将他们的方法应用于一个关于拉丁方的问题——一个简化版的数独问题。

除此之外,还有几个问题最终可能被吸收器方法解决。“组合学中,尤其是在组合设计论中,随机过程是一个非常强大的工具。”其中一个也是关于拉丁方的问题叫做Ryser-Brualdi-Stein猜想,自1960年代以来一直没有解决。

智利大学的数学建模中心的副主任斯坦恩(MayaStein)说,虽然吸收器方法可能需要进一步发展才能解决这个问题,但自30年前方法建立以来,它已经走过了漫长的道路。“看到这些方法是如何进步和丰富起来,真是人生一大幸事。”

喜欢数学心请大家收藏:()数学心

农夫是概念神?三叶草了解一下!  穿到八零,我自带锦鲤系统!  译文欣赏:博伽瓦谭  至尊战皇  暗无  我一枪一剑杀穿大陆  重生在宝可梦,我的后台超硬  在下潘凤,字无双  摊牌了,我爹是绝顶高手!  国运:拥有多重身份的我很合理吧  穿成商户女摆烂,竟然还要逃难!  哦豁!虐文炮灰不干了!  宗门全是美强惨,小师妹是真疯批  快穿之炮灰得偿所愿  我的徒弟不对劲  永恒大陆之命运  混迹娱乐圈的日子  大明:开局气疯朱元璋,死不登基  玄灵界都知道我柔弱可怜但能打  新人驾到  

热门小说推荐
火影之奈良鹿丸

火影之奈良鹿丸

穿越成为火影中的奈良鹿丸!因穿越加上‘星’的能力,精神力强大到惊粟!觉醒血继限界‘影瞳’!ltBRgt先是小小的复制一套影忍法!再觉醒万花筒,剥夺影子!强者尾兽的影子一个也不放过,佐助更是憋屈的挂掉!大小美女更是一个也不放过…...

艳魂咒飘零的风

艳魂咒飘零的风

一个失业失恋的落魄男子,遇上一个奇怪的老人,加上一个奇怪的项链之后,金钱,美女,似乎全都是从天而降,而事情却又没有这么简单,这一切,需要有魂灵去修炼!...

六零俏佳人

六零俏佳人

新书我家夫人又败家了已发求收藏,古代美食文,么么哒前世,盛夏怨恨家人的无情抛弃,为贺家人那群白眼狼付出所有,最后却落了个草席一裹,抛尸荒山的下场!重生回到悲剧尚未开始,盛夏发誓今生不会再将真心错付!哪怕吃树皮啃草根,她也要留在家人身边,同甘共苦!改写命运!一家人同心协力,走上致富的康庄大道!携手冷面男神...

绝世神针

绝世神针

他是学生是老师是医生更是深藏不露的贴身保镖。QQ群583880154...

八零小军妻

八零小军妻

养父母待她如珠如宝,她却心心念念的想要回到抛弃她待她如糠如草的亲生父母身边儿,犯蠢的后果就是养母死不瞑目,养父断绝来往,她,最终惨死车轮下重来一次,她要待养父母如珠如宝,待亲生父母如糠如草!至于抢她一切的那个亲姐姐,呵,你以为还有机会吗?哎哎哎,那个兵哥哥,我已经定亲了,你咋能硬抢?!哎哎哎...

特种高手

特种高手

(都市热血小说)叶龙曾是世界上公认的文武奇才,所到之处,再强大的敌人也得望风而逃。然而,就是这样的叱咤风云人物却突然放弃耀眼光环,回到灯红酒绿的都市保护大小姐!他性格冷酷张狂,为达到目的不择手段!凭借惊人的本能和超人的智力,在繁华的天骄市上演一场激情四射的热血人生!PS本书读者群128492045(豆丹家族)...

每日热搜小说推荐