手机浏览器扫描二维码访问
常见于黎曼几何的非线性偏微分方程。
是一个极为艰深而复杂的偏微分方程,叫作复的Monge-Ampere方程。
魏尔说:“当时还没有足够的数学理论来攻克它。”
这个方程需要用动态图才可以演示出来。
卡拉比说:“一片贴在固定钢圈上的平坦塑料布。假定这片塑料布既没有刻意拉紧,也不会太松,那么当我们推挤这片塑料布时,它所形成的曲面会怎么弯曲或变化呢?如果是在中央处拉开,它会造成正曲率的向上隆起,这种蒙日—安培方程的解是“椭圆”型的。反过来说,如果塑料布的中心向内弯扭,曲面会变成曲率处处为负的鞍形,而其解是“双曲”型的。最后,如果曲率处处为零,则其解为“抛物”型。”
丘成桐知道,如果不管哪一种情形,要解的原始蒙日—安培方程都是一样的,但是必须用完全不同的技巧来解。
而上述三种微分方程里,我们分析椭圆型的技巧最为完备。椭圆型方程处理较简单的静止状况,物体不随时间或在空间中移动。这类方程用于描述不再随时间变化的物理系统,例如停止振动、回复平衡的鼓等。不仅如此,椭圆型方程的解也是三种里最容易理解的,因为当把它们绘成函数时,看来是光滑的,而且尽管在某些非线性椭圆型方程中会出现奇点,但我们几乎不会碰到棘手的奇点。
双曲型微分方程描述的是像永远不会达到平衡状态的波与振动。和椭圆型不同,这类方程的解通常有奇点,因此处理起来困难许多。如果是线性的双曲型方程,我们还可以处理得相当好(线性指的是当改变某一变数的值时,另一变数的值会成比例变化),但如果是非线性双曲型方程,我们就没有有效的工具来控制奇点。
抛物型方程则介于两者之间,描述的是最终会趋于平衡的稳定物理系统,例如振动中的鼓,但因还未到达平衡状态,因此必须考虑时间的变化。与双曲型相比,这类方程较少出现奇点,而且就算有,奇点也会慢慢趋于平滑,因此就处理的困难度而言,也介于椭圆型和双曲型之间。
然而,数学上的挑战还不仅止于此。虽然最简单的蒙日—安培方程只有两个变数,许多方程则有更多变数。有些方程已超出双曲的程度,有时称为超双曲型;关于这类方程的解,我们所知甚少。
卡拉比所说的:“一旦超出了熟悉的三种类型,我们就对方程的解毫无头绪,因为在此并没有物理世界的现象可资援引。”
由于这三类方程的难易度有所不同,迄今为止,绝大多数来自几何分析的贡献,都是关于椭圆型和抛物型的情况。
当然我们对三类方程都有兴趣,而且双曲型方程还有许多引人入胜的问题,像是完整的爱因斯坦方程。只要还有余裕,数学家当然是非常想要解决的。
喜欢数学心请大家收藏:()数学心
混迹娱乐圈的日子 新人驾到 国运:拥有多重身份的我很合理吧 我的徒弟不对劲 穿成商户女摆烂,竟然还要逃难! 哦豁!虐文炮灰不干了! 快穿之炮灰得偿所愿 宗门全是美强惨,小师妹是真疯批 农夫是概念神?三叶草了解一下! 大明:开局气疯朱元璋,死不登基 永恒大陆之命运 至尊战皇 玄灵界都知道我柔弱可怜但能打 我一枪一剑杀穿大陆 在下潘凤,字无双 重生在宝可梦,我的后台超硬 译文欣赏:博伽瓦谭 暗无 穿到八零,我自带锦鲤系统! 摊牌了,我爹是绝顶高手!
穿越成为火影中的奈良鹿丸!因穿越加上‘星’的能力,精神力强大到惊粟!觉醒血继限界‘影瞳’!ltBRgt先是小小的复制一套影忍法!再觉醒万花筒,剥夺影子!强者尾兽的影子一个也不放过,佐助更是憋屈的挂掉!大小美女更是一个也不放过…...
一个失业失恋的落魄男子,遇上一个奇怪的老人,加上一个奇怪的项链之后,金钱,美女,似乎全都是从天而降,而事情却又没有这么简单,这一切,需要有魂灵去修炼!...
新书我家夫人又败家了已发求收藏,古代美食文,么么哒前世,盛夏怨恨家人的无情抛弃,为贺家人那群白眼狼付出所有,最后却落了个草席一裹,抛尸荒山的下场!重生回到悲剧尚未开始,盛夏发誓今生不会再将真心错付!哪怕吃树皮啃草根,她也要留在家人身边,同甘共苦!改写命运!一家人同心协力,走上致富的康庄大道!携手冷面男神...
他是学生是老师是医生更是深藏不露的贴身保镖。QQ群583880154...
养父母待她如珠如宝,她却心心念念的想要回到抛弃她待她如糠如草的亲生父母身边儿,犯蠢的后果就是养母死不瞑目,养父断绝来往,她,最终惨死车轮下重来一次,她要待养父母如珠如宝,待亲生父母如糠如草!至于抢她一切的那个亲姐姐,呵,你以为还有机会吗?哎哎哎,那个兵哥哥,我已经定亲了,你咋能硬抢?!哎哎哎...
(都市热血小说)叶龙曾是世界上公认的文武奇才,所到之处,再强大的敌人也得望风而逃。然而,就是这样的叱咤风云人物却突然放弃耀眼光环,回到灯红酒绿的都市保护大小姐!他性格冷酷张狂,为达到目的不择手段!凭借惊人的本能和超人的智力,在繁华的天骄市上演一场激情四射的热血人生!PS本书读者群128492045(豆丹家族)...