手机浏览器扫描二维码访问
“上同调群”是讨论流形闭链(可以想成高维的闭圈)以及它们彼此相交的理论,闭链与流形之中没有边界的子流形有关。
想理解子流形的意思,可以想象一个切成球状的瑞士起司,整个球状的起司块可以想成一个三维空间,而它的内部则可能有上百个洞孔,这些洞的壁面就是子流形,某些可以从外包覆,有些可以用橡皮筋在里面绕一圈。
子流形是有精确形状和大小的几何形体,但对物理学家来说,闭链则是一种基于拓扑考虑,不需要那么明确定义的物件,大部分几何学家将闭链视为广义的子流形。
虽然如此,我们可以将闭链想成类似绕甜甜圈一圈的闭圈,借以得到流形的拓扑信息。
物理学家有一套方法,为给定的流形指定一个量子场论。
流形通常有无穷多个闭链,物理学家用一种逼近法将闭链数降到有限个、因此也比较容易处理的值。
这样的过程称为“量子化”(quantization),将本来有无穷多可能的设定变成只有几个容许值(就好像广播电台的频率)。
这个过程必须对原来的方程式做量子修正,又因为这是一组关于闭链的方程,因此是关于上同调群的方程,所以我才为它取名为量子上同调群。
不过做量子修正的方法并不是只有一种,幸好有镜对称,对于给定的卡拉比—丘流形,可以得到与它物理性质相同的镜伴流形。
这个镜伴流形有两种描述方式,来自两个看起来很不同但基本上等价的弦论版本:ⅡA理论和ⅡB理论,它们所描述的量子场论是相同的。
在B模型时,做量子修正的计算相对简单,而且量子修正为零;而A模型实质上是不可能计算的,量子修正也不是零。
德拉姆发现了一种上同调结构。
这是结合了代数拓扑和微分拓扑的工具。
代数拓扑本是用群论来研究拓扑空间的。
微分拓扑是研究微分流形和可以微分映射的数学分支。
德拉姆把它们结合后,找到了能适合计算和用具体上同调类的方法表达关于光滑流形的基本拓扑信息。
霍奇得知之后,就想用这种工具研究光滑流形,光滑就是这个流形是处处可以微分的。
霍奇主要就是研究光滑流形M的实数上同调群在M上的黎曼度量,使用的工具就是很多个拉普拉斯算子和偏微分算子。
这两种算子也就是可以反映光滑流形的表面和内里的形状变化的。
这就是霍奇理论,到1941年的霍奇理论由魏尔(Weyl)和小平邦彦(Kodaira)整理完成。
喜欢数学心请大家收藏:()数学心
穿成商户女摆烂,竟然还要逃难! 暗无 国运:拥有多重身份的我很合理吧 我的徒弟不对劲 农夫是概念神?三叶草了解一下! 至尊战皇 我一枪一剑杀穿大陆 摊牌了,我爹是绝顶高手! 大明:开局气疯朱元璋,死不登基 永恒大陆之命运 新人驾到 宗门全是美强惨,小师妹是真疯批 在下潘凤,字无双 快穿之炮灰得偿所愿 混迹娱乐圈的日子 穿到八零,我自带锦鲤系统! 译文欣赏:博伽瓦谭 哦豁!虐文炮灰不干了! 玄灵界都知道我柔弱可怜但能打 重生在宝可梦,我的后台超硬
穿越成为火影中的奈良鹿丸!因穿越加上‘星’的能力,精神力强大到惊粟!觉醒血继限界‘影瞳’!ltBRgt先是小小的复制一套影忍法!再觉醒万花筒,剥夺影子!强者尾兽的影子一个也不放过,佐助更是憋屈的挂掉!大小美女更是一个也不放过…...
一个失业失恋的落魄男子,遇上一个奇怪的老人,加上一个奇怪的项链之后,金钱,美女,似乎全都是从天而降,而事情却又没有这么简单,这一切,需要有魂灵去修炼!...
新书我家夫人又败家了已发求收藏,古代美食文,么么哒前世,盛夏怨恨家人的无情抛弃,为贺家人那群白眼狼付出所有,最后却落了个草席一裹,抛尸荒山的下场!重生回到悲剧尚未开始,盛夏发誓今生不会再将真心错付!哪怕吃树皮啃草根,她也要留在家人身边,同甘共苦!改写命运!一家人同心协力,走上致富的康庄大道!携手冷面男神...
他是学生是老师是医生更是深藏不露的贴身保镖。QQ群583880154...
养父母待她如珠如宝,她却心心念念的想要回到抛弃她待她如糠如草的亲生父母身边儿,犯蠢的后果就是养母死不瞑目,养父断绝来往,她,最终惨死车轮下重来一次,她要待养父母如珠如宝,待亲生父母如糠如草!至于抢她一切的那个亲姐姐,呵,你以为还有机会吗?哎哎哎,那个兵哥哥,我已经定亲了,你咋能硬抢?!哎哎哎...
(都市热血小说)叶龙曾是世界上公认的文武奇才,所到之处,再强大的敌人也得望风而逃。然而,就是这样的叱咤风云人物却突然放弃耀眼光环,回到灯红酒绿的都市保护大小姐!他性格冷酷张狂,为达到目的不择手段!凭借惊人的本能和超人的智力,在繁华的天骄市上演一场激情四射的热血人生!PS本书读者群128492045(豆丹家族)...