手机浏览器扫描二维码访问
本小章还未完,请点击下一页继续阅读后面精彩内容!
在三十年代,扎里斯基把克鲁尔的广义赋值论应用到代数几何,特别是双有理变换上,他是从这方面来奠定代数几何的基础,并且作出了实质性的贡献。
扎里斯基和其他的数学家在这方面的工作,大大扩展了代数几何的领域:首先,由复数域到一般域;其次,由代数曲线、曲面推广到一般代数簇,定义是完全内蕴的,也就是抛掉装着代数簇的外围空间。
他还证明了下述扎里斯基主要定理:“如果双有理对应在正规定p外不是正则的,那么p的像的各个分支的维数大于等于一。”由此阐明了双有理对应的性质。
对于奇点解消问题,即射影空间中任意不可约代数簇都能够双有理地变换为射影空间内的不带奇点的代数簇,在特征为零及维数小于等于三时,他给出了证明。
一九四四年,他又证明了特征为〇的域上三维代数簇的奇点可以解消。
域k上的不可约代数簇V,如果它的函数域上k上是纯绍越的,就称为一个有理簇。
扎里斯基给出了判别代数闭域上的完备光滑曲面S是有理的一个充分必要准则。
这个重要准则,现在称为卡斯泰尔诺沃-扎里斯基判别准则。
关于代数曲面,扎里斯基还严格地证明了卡斯泰尔诺沃的定理:设L为代数闭域k上两变量有理函数域k(x,y)的子域且包含k,如果k(x,y)在L上为可分代数的,那么L是k上的二元有理函数域。
在代数曲面的理论中,寻求与给定的代数曲面双有理等价的非奇异代数曲面的问题,是这个领域中最基本的问题之一,扎里斯基在特征为〇的域上给出了基于赋值论的纯代数的证明。
关于代数曲面的分类,扎里斯基和其他数学家给出了完整的结果。
他还引进正规簇和正规化的概念,并应用于线性系、双有理变换及代数对应等理论中。
关于诺德环,他得出:若半局部整环R是一个域上的有限生成环的商环,则R是解析非分歧的,若R还是正规局部环,则R是解析正规的。
他还指出,即使以更一般的理想的幂引入拓扑,一切理想仍是闭集。
在关于局部一致性的研究中,扎里斯基导入了代数簇V上的拓扑,现在称为扎里斯基拓扑。在这个拓扑中V的闭子集就是V的代数子簇。
在一九四九至一九五一年间,他发展了在簇V上的全形态方程以及在簇V的代数子簇上这种方程的解析连续性的半球理论,这个理论使他能够给出一个新的、严密的对退化原理和恩里克斯连续定理的证明。一九五〇年他还发展了局部环论。
一九六四至一九七八年间,扎里斯基主要关心两个新理论的发展:在簇V上的等奇异性理论和饱和性理论。
等奇异点簇。
从古典几何到现在,奇异的等效性只在代数曲线上有定义。因此,只能对W具有维数r-1而V具有维数r的情形下发展一个完全的关于等奇异性的理论。
扎里斯基和其他美国和外国数学家〔特别是法国数学家〕後来致力于发展一个具有任何维数的簇V和其子簇W的等奇异性的可能性的一般理论。
饱和性理论在某种意义上是等奇异性理论的特殊情况。
这个理论是已经在W上等奇异性的V建立一个在最小意义下的等奇异性的标准,即它是在W上的解析乘积。
扎里斯基关于饱和性的一般定理的证明为这个标准提供了依据。
扎里斯基对极小模型理论也作出了贡献。
他在古典代数几何的曲面理论方面的重要之一,是曲面的极小模型的存在定理〔一九五八年〕。
它给出了曲面的情况下代数-几何间的等价性。
这就是说,代数函数域一经给定,就存在非奇异曲面〔极小模型〕作为其对应的“好的模型”,而且射影直线如果不带有参数就是唯一正确的。
因此要进行曲面的分类,可考虑极小模型,这成了曲面分类理论的基础。
具有仿射结构的集合就是一个仿射空间。
从A的扎里斯基拓扑就可诱导得代数簇的扎里斯基拓扑。
扎里斯基对代数几何做出做出了重大贡献。
代数几何是研究关于高维空间中由若干个代数方程的公共零点所确定的点集,以及这些点集通过一定的构造方式导出的对象即代数簇。
从观点上说,它是多变量代数函数域的几何理论,也与从一般复流形来紧密地结合起来。
从方法上说,则和交换环论及同调代数有着密切的联系。
喜欢数学心请大家收藏:()数学心
新人驾到 重生在宝可梦,我的后台超硬 农夫是概念神?三叶草了解一下! 穿成商户女摆烂,竟然还要逃难! 混迹娱乐圈的日子 国运:拥有多重身份的我很合理吧 哦豁!虐文炮灰不干了! 摊牌了,我爹是绝顶高手! 暗无 我的徒弟不对劲 玄灵界都知道我柔弱可怜但能打 在下潘凤,字无双 永恒大陆之命运 至尊战皇 快穿之炮灰得偿所愿 穿到八零,我自带锦鲤系统! 大明:开局气疯朱元璋,死不登基 译文欣赏:博伽瓦谭 宗门全是美强惨,小师妹是真疯批 我一枪一剑杀穿大陆
左手惊天医术右手至强武功,携带百年记忆,重生回归都市,这一世,定要纵横无敌执掌一切,登临苍穹之巅!...
军少娇宠未来大小姐由作者绵绵妙创作全本作品该小说情节跌宕起伏扣人心弦是一本难得的情节与文笔俱佳的好书919言情小说免费提供军少娇宠未来大小姐全文无弹窗的纯文字在线阅读。...
已完本穿越异世成为财主家的小白脸赘婿,因太废物被赶出来。于是他发奋图强,找一个更有权有势绝美高贵的豪门千金做了上门女婿。练武是不可能练武的,这辈子都不可能练武,只能靠吃软饭才能维持生活!我要把老婆培养成天下第一高手,谁敢惹我就让我娘子打死你!...
前世黑莲花白蓁被人在车上动了手脚车祸去世,穿越成了合欢宗女修白千羽,开启了和前世开后宫没什么不同的修仙之路。这篇算是某某宗女修炼手札的同人,但是是否玩游戏对看文没啥影响,文不会收费,大家放心追,女主是自设的无心海王型号。挂是挂了修真的名头,其实本文没有着重写女主初期修炼,主要还是着重她成为女王之后的故事。全文分三部分,第一二部分女主一边双修一边把以前给她使绊子的人给除了,手段稍微有点粗暴残忍,结果奇奇怪怪自称系统的东西出现了,告诉她,她已成为了这条世界线的主人,同时她设计把自己也拱成了修真大陆的无冕之王。第三部分开幕,无冕之王并不是这么好当的,一边要均衡各大势力,挑对自己有用的掌握在手里,一边要处理情人们的修罗场。。。。偶尔,系统还会给她出难题,让她暴打外来入侵者。然而白蓁(千羽)对此表示,挺好玩的,再来点。本文可能微微有点女尊倾向,女主床上小淫娃,床下真女王,没心没肺,快乐加倍。有疑似正宫,但是基本不会出现1v1的情况,女主这么强,配一个男的太亏了(啥?)。预警,女主从目前的伦理道德来讲,确实是渣女,而且吸溜子也没想洗。...
为了躲避一个美女疯狂的纠缠,叶权宇在好友的帮助下偷偷来到日本,光荣地成为了圣樱花女子高中的第一名男学生,原本只想平静读完高中的他,面对一群萌萌的少女,生活又怎么可能平静得了?交流群号2746792欢迎大家前来交流吐槽!...
...