手机浏览器扫描二维码访问
1755年,瑞士数学家L.欧拉在写一本叫《流体运动的一般原理》的书。
其中在研究无粘性流体动力学时,发现了一种运动的微分方程。
这个微分方程是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程。
欧拉敏锐的发现,这个方程还可以去解释热的传导、圆膜的振动、电磁波的传播等问题。
长得是这样的,ax2D2y+bxDy+cy=f(x),类似二次方程。
其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D2y的系数是二次函数ax2,一阶导数Dy的系数是一次函数bx,y的系数是常数。
而且,欧拉不止步于此,还继续发现了高次导数的推广的形式。
同时欧拉使用带自然对数底的带还,再用D表示微分符号,再用归纳法,转化出常微分方程。
得出的方程可以求出2次甚至高次的常微分方程通解。
在物理学上,欧拉方程统治刚体的转动,可以选取相对于惯量的主轴坐标为体坐标轴系,这使得计算得以简化,因为我们如今可以将角动量的变化分成分别描述的大小变化和方向变化的部分,并进一步将惯量对角化。
方程组各方程分别代表质量守恒(连续性)、动量守恒及能量守恒,对应零粘性及无热传导项的纳维-斯托克斯方程。
历史上,只有连续性及动量方程是由欧拉所推导的。然而,流体动力学的文献常把全组方程——包括能量方程——称为“欧拉方程”。跟纳维-斯托克斯方程一样,欧拉方程一般有两种写法:“守恒形式”及“非守恒形式”。守恒形式强调物理解释,即方程是通过一空间中某固定体积的守恒定律;而非守恒形式则强调该体积跟流体运动时的变化状态。
欧拉方程可被用于可压缩性流体,同时也可被用于非压缩性流体——这时应使用适当的状态方程,或假设流速的散度为零。
f(x)=x^n*y^(n)+p1*x^(n-1)*y^(n-1)+……+pn-1*x*y+pn*y
其中做变换x=e^t或t=lnx,将自变量x换成t。
可得到dydx,很对对应的对y求x高阶导数的各个公式。
用符号D表示对t求导的运算ddt。
可得xy,x^2y,以至得到x^n*y^(n)表示出的关于D的式子。
然后带入方程,再把t换成lnx,得到原方程的解法。
可以轻松求解一个在弹性力学中常见的四阶变系数线性微分方程。
喜欢数学心请大家收藏:()数学心
至尊战皇 重生在宝可梦,我的后台超硬 混迹娱乐圈的日子 国运:拥有多重身份的我很合理吧 我的徒弟不对劲 我一枪一剑杀穿大陆 摊牌了,我爹是绝顶高手! 哦豁!虐文炮灰不干了! 大明:开局气疯朱元璋,死不登基 玄灵界都知道我柔弱可怜但能打 宗门全是美强惨,小师妹是真疯批 新人驾到 快穿之炮灰得偿所愿 穿成商户女摆烂,竟然还要逃难! 农夫是概念神?三叶草了解一下! 穿到八零,我自带锦鲤系统! 暗无 译文欣赏:博伽瓦谭 在下潘凤,字无双 永恒大陆之命运
段飞是个倒霉的孩子,老爹被人陷害入狱,又遭遇对象退婚,开间小诊所给村里的人治病,连温饱都不行。可他从未放弃过努力,他坚信只要人不死,必定有站在人生巅峰的那天,最后他用枚小小的银针走上复仇之路,凭精湛的针灸获得无数美女青睐陪伴。这是个励志故事,段飞的崛起之路经受无数阴谋陷害,可他为了坚守正义毫不畏惧,视死如归跟邪恶力量做斗争。...
他是绝世炼丹天才,因生来不能修炼武道,遭到自己最亲近的女人背叛杀害,转世重生于一个被人欺凌的废材少年身上。废材?天才?笑话,这万界内没人比他杨辰更了解培养天才!武道?丹道?双修又有何难!成就妖孽之道一路逆袭!极我逸才铸神体,荡尽不平!以我璀华炼仙丹,万界颤抖!...
...
下载客户端,查看完整作品简介。...
神界第一高手,有‘贱神’之称的云飞扬被镇压万载,破土重生,痛定思痛,梦想收尽天下各色美女!泡妞,我是认真的。云飞扬道。姑娘,你愿意嫁给我?清纯可爱邻家女刁蛮任性大小姐成熟妩媚女导师冷若冰山大师姐腹黑毒辣女魔头,这些,统统是我云飞扬的女人!妖孽群529642893...
肉身不破,灵魂不灭,为了回到穿越前,为了再见到他可爱的女儿,不断引起星域乱战,一个不死强者,重启纪元,回归平凡,从此一个无敌奶爸诞生了。续集,正在新书连载着...