手机浏览器扫描二维码访问
虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的Cramer悖论就是一个漂亮的例子。
在描述Cramer悖论之前,让我们先来考虑一个简单的情况。
两条直线交于一点。
反过来,过一点可以做两条不同的直线。
事实上,过一点可以做无数条直线。
确定一条直线需要两个点才够。
一切都很正常。
现在,考虑平面上的两条三次曲线。
由于将两个二元三次方程联立求解,最多可以得到9组不同的解,因此两条三次曲线最多有9个交点。另外,三次曲线的一般形式为
x^3+a·x^2·y+b·x·y^2+c·y^3+d·x^2+e·x·y+f·y^2+g·x+h·y+i=0
这里面一共有9个未知系数。
代入曲线上的9组不同的(x,y),我们就能得出9个方程,解出这9个未知系数,恢复出这个三次曲线的原貌。
也就是说,平面上的9个点唯一地确定了一个三次曲线。
这次貌似就出问题了:“两条三次曲线交于9个点”和“9个点唯一地确定一条三次曲线”怎么可能同时成立呢?
既然这9个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?
在没有线性代数的年代,这是一个令人匪夷所思的问题。
Cramer和Euler是同一时代的两位大数学家。
他们曾就代数曲线问题有过不少信件交流。
上面这个问题就是1744年9月30日Cramer在给Euler的信中提出来的。
在信中,Cramer摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用9个点唯一地确定下来,两条三次曲线可能产生出9个交点。
Cramer向Euler提出了自己的疑问:这两个结论怎么可能同时成立呢?
Euler心中的疑问不比Cramer的少。
接下来的几年里,他都在寻找这个矛盾产生的源头。
1748年,Euler发表了一篇题为Surunecontradictionapparentedansladoctrinedeslignescourbes(关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。
快穿之炮灰得偿所愿 玄灵界都知道我柔弱可怜但能打 在下潘凤,字无双 宗门全是美强惨,小师妹是真疯批 穿到八零,我自带锦鲤系统! 至尊战皇 混迹娱乐圈的日子 译文欣赏:博伽瓦谭 暗无 国运:拥有多重身份的我很合理吧 重生在宝可梦,我的后台超硬 大明:开局气疯朱元璋,死不登基 农夫是概念神?三叶草了解一下! 我的徒弟不对劲 摊牌了,我爹是绝顶高手! 新人驾到 我一枪一剑杀穿大陆 永恒大陆之命运 哦豁!虐文炮灰不干了! 穿成商户女摆烂,竟然还要逃难!
穿越到海贼世界,罗德得到可以抽取天赋能力的神器知识之书。剑斩天地,掌控雷霆,行走空间,信仰之力铸造地上神国!神恩如海,神威如狱。来到这个世界,就注定无敌于世。...
18岁那年,我娘被我爹打死,然后我爹娶了个和我一样大的后娘进门。7天后,我娘爬出棺材,敲开了我父亲的门欢迎关注我的微博大家看的时候记得先登陆(QQ号直接登陆就可以了!)然后点一下封面下面的推荐按钮!加更规则200个钻石加一更!单独打赏两个玉佩加一更!一个皇冠加五更!关键词阴娘最新章节阴娘小说阴娘全文阅读...
市二中的金牌老师孙默落水后,来到了中州唐国,成了一个刚毕业的实习老师,竟然有了一个白富美的未婚妻,未婚妻竟然还是一所名校的校长,不过这名校衰败了,即将摘牌除名,进行废校处理孙默的开局,就是要帮助未婚妻坐稳校长之位,让学校重回豪门之列。孙默得到绝代名师系统后,点废成金,把一个个废物变成了天才,在孙默的指导下,学渣...
群芳谱ltBRgt乖巧婉约的可爱妹子,美丽柔顺的魔门公主ltBRgt骄蛮倔强的异族天骄,心比天高的武林玉女ltBRgt她们最后都属于谁呢?ltBRgt且看年少英俊的少将军,流落江湖的一番奇遇。ltBRgt本书原名玉笛白马。ltfontgt...
他是学生是老师是医生更是深藏不露的贴身保镖。QQ群583880154...
当被清纯校花火辣女杀手御姐总裁绝美女老师争相纠缠!贺轩很烦恼帅,是一种病!我是校花的未婚夫,天下美女的未婚夫!传奇杀手龙潜花都,却不想惹上一身风流情债!...